TETRAHEDRON
LETTERS

Pergamon Tetrahedron Letters 40 (1999) 8763-8766

Synthesis and chemistry of new benzoporphyrins
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Abstract

Benzoporphyrins 5 and 6 are the major products obtained from the cycloaddition reactions of B-fused metallo-
pyrroloporphyrins 1 and 2 with dimethy] acetylenedicarboxylate. In the presence of excess dienophile a bis-adduct
is also obtained which undergoes retro-Diels—Alder reaction to produce 5. Benzoporphyrin § was converted into the
first reported B-fused benzochlorins 9-11, and the free-base benzoporphyrin 12 was regioselectively brominated
to afford 13. Exhaustive bromination also yields hexabromobenzoporphyrin 14. © 1999 Elsevier Science Ltd. All
rights reserved.
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Since the discovery of benzoporphyrins in some petroleum and related deposits,! several synthetic
approaches to these compounds have been described?™® in order to explore their interesting chemical
and physical properties. The extension of the macrocyclic Tr-system through a fused benzene ring
typically causes significant red-shifts in the optical spectra, increased basicity, and decreases in the
oxidation potentials of these compounds. Benzoporphyrins have been prepared from the oxidation
(with DDQ) of dihydrobenzo-2* and tetrahydrobenzoporphyrins,> from condensation of benzodipyr-
romethene hydrobromides,® from Diels—Alder type reactions involving B-vinylporphyrins and activated
dienophiles,” and from retro-Diels—Alder reactions using bicyclic-ethanodihydrobenzoporphyrins.® We
report herein a novel synthetic approach to monobenzoporphyrins via the [4+2] cycloaddition reaction
of fused metallopyrroloporphyrins, and the reactivity of the product towards bromination and nitration
reactions; nucleophilic addition of malononitrile to a B-nitrobenzoporphyrin in the presence of base also
led to the formation of previously unreported B,B’-fused benzochlorins.

N-Protected pyrroles have been successfully used in a variety of [4+2] cycloaddition reactions with
activated dienophiles.” We recently reported!? the synthesis of B-fused pyrroloporphyrins (e.g. 1, 2) from
the Barton-Zard condensation!! of metallo-2-nitro-meso-tetraphenylporphyrins with isocyanoacetates,
and an N-Boc protected metallopyrroloporphyrin has been shown to undergo a Diels—Alder reaction
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Figure 1. X-Ray structure of 6. (A) top view, (B) side view. Hydrogens have been omitted for clarity

in the presence of an activated dienophile.!> Our own studies on the cycloaddition reactions of N-
unprotected metallopyrroloporphyrins led to the discovery of a new synthetic route to benzoporphyrins.

When copper(Il) pyrroloporphyrin 1 (or its Ni complex 2)!9 was refluxed in toluene under anhydrous
conditions in the presence of excess dimethyl acetylenedicarboxylate, the Diels—Alder adduct 3 was
produced in 60-80% yield; it was rapidly converted into benzoporphyrins 4 and 5 upon prolonged
refluxing (overnight).
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The reaction was easily followed by spectrophotometry since the starting material 1 displays a Soret
absorption band at 430 nm; adduct 3 shows a Soret band at 420 nm, benzoporphyrin 4 at 436 nm, and
compound § at 430 nm. Continuous heating led to formation and isolation of benzoporphyrin 5 as the
sole product. The structure of benzoporphyrin 6 (obtained in a similar way from 2) was further confirmed
by X-ray crystallography (Fig. 1).!3.14 Benzoporphyrins 5 and 6 are probably formed by the dienophile-
induced deamination of 3.15 Refluxing the reaction mixture in 1,2,4-trichlorobenzene (240°C) for 10-30
mins led to the formation of benzoporphyrin 5 (in 55-80% yield) and a bis-adduct (20-45% yield, Soret
band at 440 nm) which showed multiple methoxy resonances in its proton NMR spectrum. The bis-adduct
underwent a retro-Diels—Alder reaction upon prolonged refluxing (8-18 h) in 1,2,4-trichlorobenzene,
producing benzoporphyrin 5. The structure and mechanism of formation of the bis-adduct are being
investigated.

The effect of the fused benzene ring on the chemistry and reactivity of benzoporphyrins was studied.
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Mononitration of § using N2Oy4 in dichloromethane occurred in excellent yield with minimal formation
of dinitro derivatives, giving products 7 and 8 as a regioisomeric mixture.

Control of the reactivity site through core metalation led preferentially to the adj-functionalized B-
nitrobenzoporphyrins 7. Indeed, after conjugate addition of malononitrile to the nitroalkene subunit in
the presence of NaH and in refluxing tetrahydrofuran,'¢ the blue-green B-fused-benzochlorin 9 was the
major product isolated. Chlorin 9 and its opp-isomer 10 displayed long-wavelength absorption Q bands
at 628 and 646 nm, respectively. Brief treatment with 33% HBr in acetic acid was found most efficient
to demetalate 9, albeit in low yield. The resulting metal-free derivative 11 displayed two sets of reduced
pyrrolic protons in its proton NMR spectrum, confirming the proposed subunit regiochemistry of 9.

Demetalation of 5 with 0.5% H,SO4 in trifluoroacetic acid quantitatively afforded the free-base
benzoporphyrin 12.

CO,Me CO,Me CO,Me
Ph O CO,Me Ph O CO,Me Br Ph O CO,Me
B
Ph Ph Ph Ph Ph Ph
Br Br Br
Ph Br Ph Br Ph Br
12 13 14

Bromination of 12 (with excess NBS in refluxing CHCI3) occurred at the pyrrole subunit opposite
to the benzene ring to afford 13, which reveals that such a fused ring acts as a ‘bond-fixing’!” entity
leading (via a favored NH-tautomeric 18 Tt-electron pathway) to regioselective electrophilic substitution.
Surprisingly, hexabromoporphyrin 14 (exclusive of any other partially brominated porphyrins) was also
identified by mass spectrometry of the crude mixture (amounting to about 10% of 13). Formation of
14 requires that the halogenation first takes place on a pyrrole unit adjacent to the fused benzene ring;
this has the effect of eliminating the directing/blocking effect of the fused benzene ring. In other words,
adjacent bromination of 12 induces the loss of a favored 18 Tt-system and results in an unprecedented
perbromination of the porphyrin macrocycle without requiring core metalation. Compound 13 did not
react upon reflux in CHCI3 in the presence of a large excess of NBS, indicating synergistic control of
the Tt-system by the bromo substituents and the antipodal fused benzene ring, thus preventing further
bromination.

In conclusion, benzoporphyrins were the products obtained from the cycloaddition reactions of
metallo[3,4-b]pyrroloporphyrins with dimethyl acetylenedicarboxylate; the B-fused benzene ring was
found to direct electrophilic substitution to the opposite pyrrole unit, by way of a favored 18 Tt-electron
delocalization pathway which excludes the benzene ring.!”
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